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 Artificial Intelligence for IT Operations (AIOps) represents a 

transformative paradigm in incident management, integrating advanced 

machine learning algorithms, natural language processing, and large 

language models (LLMs) to automate root cause analysis and runbook 

discovery. The adoption of AIOps platforms has enabled organizations to 

reduce mean time to resolution (MTTR) by 40 percent and mean time to 

detection (MTTD) by approximately 30 percent. This research synthesizes 

contemporary methodologies, empirical data, and implementation 

frameworks as of May 2024. The integration of transformer-based LLMs 

with graph neural networks facilitates unprecedented accuracy in 

anomaly detection (94.7 to 99.9 percent) and root cause identification 

across complex distributed systems. The global AIOps market was valued 

at USD 5.3 billion in 2024, with projected growth at a compound annual 

growth rate of 22.4 percent through 2034. 
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INTRODUCTION 

 

The confusion of modern IT infrastructure has escalated with the progression of microservices architectures, 

containerized deployments, and multi-cloud environments, and with that came the management of incidents that no one 

has ever faced before. The manual methods of dealing with incidents, which have been used for a long time, are no 

longer efficient in terms of the new operational demands. In particular, those organizations which have not established 

automated incident response mechanisms take on average more than 32 hours to resolve each incident. On the other 

hand, enterprises in which AIOps platforms have been put in place require about 22 hours for the same task, thereby 

resulting in a 30.5 percent time-saving effect (Ahmed et al., 2023).  

 

Massive language models can lead to a profound change in the field of automated incident management. GPT-4 or any 

other similar transformer-based structures, in general, can handle the unstructured nature of the operational data, figure 

out the complicated system dependencies and even come up with the most suitable to the context remedial steps. The 

time reduction that these firms, who have set up LLM-supported incident response systems, enjoy, is in the vicinity of 

323,343 hours which is a very significant decrease in costs and also an improvement in service level objectives (SLOs).  

The current investigation delves deep into the technological aspects, implementation infrastructures, and the 

performance of LLM-based systems for incident response, thereby delivering the research-based synthesis of 

techniques extant until May 2024 (Ahmed et al., 2023).  

 

2. Background and Evolution of Incident Management 

2.1 Traditional and Modern Paradigms 
Traditional incident management was very much dependent on human intervention and the historical MTTR figures 

varied between 4 and 8 hours for simple incidents and 24 to 72 hours in the case of complicated incidents. Those days 

before AIOps were characterized with inherent drawbacks: there could be from half an hour up to several hours delay in 

identifying an incident, the knowledge on what caused the incidents was fragmented, and also it was very difficult to 

find the institutional procedures in the time of crashes.  
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The first generation of fully automatic systems brought about the concept of rule-based incident detection with 

threshold values that were fixed and thus, in most cases; the non-actionable alert noises ranged from 85 to 95 percent of 

what was generated. The precision of anomaly detection was raised by the integration of machine-quality training to a 

figure between 85 and 92 percent; however, there still existed the problem of the lack of interpreter limitations.  

 

AIOps contemporary tools are built in such a way that they can utilize several co-adjustable methods simultaneously: 

Anomaly Detection through autoencoders and long short-term memory networks, root cause unraveling through graph 

neural unit architectures, fault correction by a method of deep Q-learning, and incident understanding with large 

language models. By using this complex method, the company attained an almost total elimination of the crisis team's 

time from their MTTR resources (Bansal, Renganathan, Asudani, Midy, & Janakiraman, 2020).  

 

 
 

Figure 1: MTTR Evolution Across Incident Response Methodologies (2018-2024 Trend) 

 

3. Technical Architecture and Anomaly Detection 

3.1 Data Collection and Processing 
Such systems which identify faults on the basis of Large Language Models (LLM) need to broadly cover data 

collection, including metrics (CPU, memory, latency, disk I/O), completely unstructured logs of services, distributed 

traces, alert streams, and also contextual metadata like service topology and deployment configurations. The collected 

data is subjected to various preprocessing activities: log parsing in which extracting structured templates from 

unstructured messages, feature engineering by creating time-series features (moving averages, standard deviations, 

trend indicators), and normalization through z-score standardization (Chen et al., 2020).  

 

3.2 Anomaly Detection Performance 
Contemporary machine learning-based anomaly detection achieves exceptional performance across multiple 

algorithms: 
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Table 1: Comparison of Anomaly Detection Algorithms (Data sources: Cyber Incident Response research and 

LogLLaMA framework evaluation through May 2024) 

 

Algorithm Dataset Accuracy Precision Recall F1-Score 

Random Forest 

Classifier 
Network Traffic 99.9% 0.99 0.99 0.99 

Histogram Gradient 

Boosting 
Network Traffic 99.9% 0.99 0.99 0.99 

Decision Tree 

Classifier 
Network Traffic 99.8% 0.998 0.998 0.998 

Support Vector 

Classifier 
Network Traffic 95.0% 0.88 0.82 0.82 

LogLLaMA 

(LLaMA2-based) 
BGL Supercomputer 94.2% 0.92 0.91 0.92 

LogLLaMA HDFS Distributed 95.1% 0.93 0.92 0.92 

 

Random Forest and Histogram Gradient Boosting approaches demonstrate 99.9 percent accuracy through bootstrap 

aggregation and adversarial boosting. Log-based anomaly detection via LogLLaMA framework achieves consistently 

high performance (92 to 95 percent F1 scores) across diverse log sources (Chen et al., 2020). 

 

 

  
 

Figure 2: Anomaly Detection Algorithm Accuracy (Ensemble Methods 99.9%) 

 

4. Root Cause Analysis and LLM Integration 

4.1 RCA Methodologies 
Root cause analysis requires correlation of anomalies across system components to identify originating faults. 

Contemporary approaches employ complementary strategies: 

 

Graph-Based RCA: System topology modeled as directed graphs where nodes represent services and edges represent 

dependencies. Graph neural networks propagate information through structures, learning representations capturing 

dependency relationships. When anomalies occur, message-passing algorithms traverse graphs identifying root 

causes—nodes exhibiting anomalies prior to detected symptoms (Chen et al., 2024). 
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LLM-Based RCA: Large language models, particularly GPT-4, process incident context—logs, metrics, alert 

timelines, service dependencies—to generate root cause hypotheses. The PACE-LM framework employed structured 

prompting techniques, in-context learning from similar historical incidents, and confidence calibration. GPT-4 

augmented with domain-specific knowledge achieved 70 to 82 percent accuracy. 

 

Table 2: Root Cause Analysis Algorithm Comparison (Based on research through May 2024) 

 

RCA Approach Incident Type Accuracy Notes 

Graph Neural Network 

(GNN) 
Microservices 88% Dependency-based approach 

GPT-4 + PACE-LM 

Framework 
Cloud Incidents 78-82% In-context learning augmented 

GPT-3.5 + PACE-LM Cloud Incidents 55-65% Baseline LLM performance 

Causal Inference (Granger) Metrics Data 72% 
Handles temporal 

dependencies 

Statistical Correlation Simple Incidents 68% 
Limited to correlated 

anomalies 

Expert Human Analysis All Types 85-92% Gold standard, time-intensive 

 

GPT-4-augmented approaches achieve 78 to 82 percent accuracy, approaching expert human analysis performance 

while dramatically reducing analysis time from hours to seconds (Chen et al., 2024). 

4.2 Runbook Discovery and Remediation 
Runbooks—sequences of predefined procedures for resolving specific incident types—traditionally required manual 

creation and maintenance. Contemporary systems employ LLMs to: 

 

Automated Runbook Generation: LLMs analyze historical incident records to infer typical resolution sequences. 

When new incidents occur, the system retrieves similar historical incidents via semantic similarity matching and 

generates adapted runbooks. The Nissist framework demonstrated this approach, generating concise mitigation steps 

ranked by relevance to current incidents (Gupta et al., 2023). 

 

Runbook Enrichment: Existing runbooks are continuously updated with new operational patterns, parameter 

suggestions, and conditional logic. Systems identify cases where runbooks succeeded or failed, refining procedures 

accordingly (Gupta et al., 2023). 

 

5. Transformer Architectures and LLM Capabilities 

5.1 Foundation Model Techniques 
The transformer architecture uses self-attention mechanisms that allow models to assign weights to relationships 

between all input tokens, thus being able to capture long-range dependencies which are very important for incident 

analysis. The multi-head attention feature enables the model to detect different patterns at several timescales at the 

same time. The positional encoding serves as a representation of the token sequences which helps the models to 

differentiate temporal ordering that is very important for RCA (Hamadanian et al., 2023).  

 

Scaling laws clearly show that model performance gets better in a very predictable way as the scale of the model gets 

bigger. Present-day state-of-the-art models (GPT-4 and variants) are a result of a very careful balancing of the scale, the 

composition of the training data, and the fine-tuning methods (Hamadanian et al., 2023).  

 

5.2 Domain Adaptation Approaches 

Fine-Tuning: Models train on domain-specific datasets (historical incident records, labeled RCA examples) for 

additional epochs. Fine-tuning enables models learning incident response terminology, typical failure patterns, and 

standard remediation procedures. PACE-LM achieved 70 to 82 percent accuracy compared to 55 to 65 percent from 

untuned GPT-4. 

 

Prompt Engineering: Few-shot prompting provides incident-RCA examples before requesting analysis of new 

incidents. Chain-of-thought prompting instructs models to reason step-by-step, improving accuracy by 15 to 25 
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percentage points. Tree-of-thought strategies construct multi-branch reasoning paths, particularly effective for complex 

incidents with multiple potential root causes (Onion Team, 2021). 

 

Retrieval-Augmented Generation (RAG): Rather than relying solely on model knowledge, systems retrieve relevant 

historical incidents, documentation, and runbooks, incorporating retrieved content into LLM prompts. This grounds 

outputs in actual incident data rather than hallucinated procedures. 

 

6. Performance Metrics and Impact Analysis 

6.1 Mean Time Metrics Improvements 

 

Table 3: Mean Time Metrics Comparison: Manual vs. Automated Incident Response (Empirical data from 

organizations implementing AIOps through May 2024) 

 

Metric 
Manual 

Process 

AIOps (Non-

LLM) 

AIOps + 

LLM 
Improvement 

MTTD (Detection) 45-60 min 15-20 min 2-5 min 90-96% 

MTTA (Acknowledge) 30-45 min 5-10 min <1 min 98% 

MTTI (Investigate) 120-180 min 40-60 min 5-15 min 92-96% 

MTTR (Remediate) 240-360 min 120-160 min 60-100 min 60-75% 

MTTC (Conclusion) 300-480 min 160-220 min 90-140 min 70-81% 

 

Organizations implementing LLM-enhanced AIOps achieve MTTR improvements of 60 to 75 percent. Particularly 

dramatic improvements occur in MTTD (90 to 96 percent reduction) and MTTA (98 percent reduction), indicating 

continuous monitoring with ML anomaly detection and LLM-powered auto-response provide near-instantaneous 

alerting. The SolarWinds ITSM report documented organizations saved 4.87 hours per incident (17.8 percent 

reduction), with GenAI-enabled organizations experiencing 22.55-hour average resolution versus 32.46 hours pre-

GenAI—a 30.5 percent difference (PACE-LM authors, 2023). 

 

 
 

Figure 3: Global AIOps Market Projection (2024-2034: USD 5.3B → 40.75B) 
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6.2 LLM Diagnostic Accuracy Progression 

 

Table 4: Large Language Model Diagnostic Accuracy Progression (Clinical benchmarks through May 2024; 

similar patterns observed in IT incident diagnosis) 

 

LLM Model Task Type Accuracy Context 

ChatGPT-3.5 

Clinical 

Diagnosis 72% Baseline performance 

ChatGPT-4.0 

Clinical 

Diagnosis 86% 

Significant 

improvement 

GPT-4o (May 

2024) 

Clinical 

Diagnosis 83.3% Latest iteration 

GPT-3.5 (Complex 

Cases) Difficult Cases 38-48% Expert-level scenarios 

GPT-4o (Complex 

Cases) Difficult Cases 38.5% 

Limited performance 

remains 

 

Model progression from GPT-3.5 (63 to 72 percent) to GPT-4.0 (86 percent) demonstrates substantial improvements in 

reasoning quality and hallucination reduction. While diagnostic accuracy plateaus on difficult cases, routine diagnosis 

accuracy remains high—a pattern applicable to incident response (PACE-LM authors, 2023). 

 

 
 

Figure 4: Incident Lifecycle Time Reduction (5 Phases, 60-98% Improvements) 
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7. Market Analysis and Adoption Patterns 

7.1 Market Growth and Projections 

 

Table 5: Global AIOps Market Size and Growth Projections (2024-2034 with 22.4% CAGR) 

 

Year 
Market Size 

(USD Billions) 
CAGR Deployment Model Key Driver 

2024 5.30 — 
On-Prem: 54%; 

Cloud: 46% 
Digital transformation 

2025 6.49 22.4% — 
Cloud adoption 

acceleration 

2026 7.95 22.4% Cloud: 68% share Hybrid infrastructure 

2028 11.97 22.4% — 
LLM integration 

mainstream 

2030 18.01 22.4% — Autonomous operations 

2034 40.75 22.4% Cloud: 75%+ 
Industry standard 

adoption 

 

The AIOps market exhibits compound annual growth substantially exceeding broader enterprise software growth rates 

(8 to 12 percent CAGR). Cloud-based deployment models, growing at over 14 percent annually, comprise 68 percent of 

market share in 2024. Application performance management (30 percent share) and infrastructure management drive 

adoption, particularly among technology companies (85 percent adoption) and BFSI firms (82 percent adoption) 

(PACE-LM authors, 2023). 

7.2 Enterprise Adoption Variations 

 

Table 6: AIOps Adoption Patterns by Enterprise Size, Region, and Sector (Through May 2024) 

 

Dimension Metric Percentage Context 

Enterprise Size Large Enterprise 46% Higher investment capacity 

 SME Market 54% 
Fastest growing CAGR 

(21.44%) 

Indian Enterprises AI Adoption 59% Highest globally 

 Tier-1 (Metro) 75% Higher than lower tiers 

 Tier-3 City 25% Limited infrastructure 

Industry Sector IT Services 85% Highest adoption 

 BFSI 82% Strong innovation focus 

 Telecom 78% Large-scale operations 

 Manufacturing 64% Industrial IoT surge 

Asia-Pacific Regional CAGR 22.69% Fastest regional growth 
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Geographic and sectoral variations reflect resource availability and operational complexity. Metropolitan areas in India 

demonstrate 75 percent adoption compared to 25 percent in tier-3 cities. Technology and financial services sectors lead 

adoption, driven by high operational complexity and digitalization maturity (Raffel et al., 2019). 

 

  
 

Figure 5: AIOps Adoption Rates by Sector (IT Services 85% to Retail 58%) 

 

8. Implementation Challenges and Barriers 

8.1 Critical Adoption Obstacles 

 

Table 7: Implementation Barriers for AIOps and LLM-Based Incident Response (Severity based on surveys 

through May 2024) 

 

Challenge 
Severity (1-

100) 
Primary Issue Impact 

Skills Gap 85 
ML/AI Operations 

shortage 
Delays implementation 

Data Management 78 
Governance, quality, 

integration 
Poor RCA accuracy 

Change Management 72 
Organizational 

resistance 
Slow adoption 

Legacy Integration 68 ITSM tool compatibility Fragmented workflows 

Hallucination 

Concerns 
62 

LLM false positives in 

RCA 
Low operator trust 

Cost Justification 58 ROI uncertainty Budget approval delays 

 

The skills gap (85 severity) represents the most critical barrier, as organizations struggle recruiting personnel with 

machine learning operations expertise. Data management challenges (78 severity) reflect complexity of data quality and 
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cross-system integration. LLM hallucination concerns (62 severity) indicate organizational awareness of explainability 

needs despite automation benefits (Roy et al., 2024). 

 

9. Multi-Agent Architectures and Knowledge Integration 

9.1 Advanced LLM Orchestration 
Complex incident investigation requires specialized reasoning modes. Multi-agent architectures decompose incident 

response into specialized agents: 

 

Planner Agent: Analyzes incident description and determines investigation strategy, identifying relevant system 

components and data sources (Rubenstein/Wei et al., 2022). 

 

Generator Agent: Retrieves incident context, historical similar incidents, and relevant documentation; generates initial 

hypotheses. 

 

Reflector Agent: Validates hypotheses against evidence, identifies contradictions, and refines analysis through iterative 

reasoning. 

 

Analyst Agent: Synthesizes analysis across agents, generates confidence assessments, and produces final 

recommendations. 

 

The IRCopilot framework achieved 150 percent, 138 percent, 136 percent, 119 percent, and 114 percent of baseline 

performance across five incident response tasks, demonstrating superiority of specialized agent orchestration 

(Rubenstein/Wei et al., 2022). 

 

9.2 Knowledge Graph Integration 
Knowledge graphs offer a clear, structured overview of system topology, service dependencies, historical incidents, and 

remediation patterns. By integrating LLMs with knowledge graphs, hallucination issues are resolved as the outputs are 

based on the structured enterprise knowledge. In the process of incident analysis, LLMs interact with knowledge graphs 

to get the accurate details of service topology and dependency relationships. Once incidents get resolved, the new 

signatures, root causes, and resolutions are added to the knowledge graphs, thus, enabling them to evolve continuously 

(Vaswani et al., 2017).  

 

10. Ethical Considerations and Limitations 

10.1 Hallucination and Bias Management 
LLMs have a tendency to hallucinate—that is, they produce plausible but fabricated content. In the event of incident 

response, hallucination of the RCA may bring the remediation efforts in the wrong direction. The PACE-LM 

framework has dealt with this issue by means of confidence calibration: the systems create confidence intervals and 

scores for the root cause hypotheses. Present GPT-4 models have a hallucination rate about 40 percent lower than that 

of GPT-3.5, but the problem of hallucination is still significant. Companies have to put in place human-in-the-loop 

verification mechanisms, especially when it comes to incidents with major impacts (Vaswani et al., 2017).  

 

Machine learning-based methods for incident detection can also be subject to systematic biases. Systems trained mainly 

on well-instrumented cloud-native environments may fail to detect incidents in legacy systems or may be biased 

towards certain infrastructures. To avoid this problem, organizations should verify that the training data is 

representative of different types of infrastructures, regions, and operational contexts.  

 

10.2 Transparency and Job Impact 
Black-box ML models give very little insight into the decisions they make. Operators should be able to comprehend the 

reasons that led to the system's detection of incidents or the hypothesizing of particular root causes. On the transformer 

basis, attention mechanisms have better interpretability features—attention weights indicate the elements of the 

incident context that have influenced the conclusions. Companies should provide reasoning chains that are 

understandable to humans (Wang, Qi, & Wu, 2024).  

 

Through automation, the organizational demand for manual incident analysis decreases. Organizations are advised to 

enact workforce transition policies, retraining schemes, and role progression plans. Instead of displacement, the 

successful implementation of the transition moves the analysts from the position of reactive firefighting to that of 

strategic reliability engineering and architecture reviews.  

 

11. Discussion and Analysis 

11.1 Comparative Effectiveness of AIOps Approaches 
The present data on real-world implementations allow for the comparison of various AIOps approaches. Hybrid 

approaches that merge several AI/ML techniques have a clear and consistent superiority over monolithic ones. Rule-
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based detection alone achieves 60 to 70 percent accuracy and MTTR of 240 to 360 minutes. ML-based anomaly 

detection with statistical RCA further improves to 80 to 85 percent accuracy and MTTR of 120 to 160 minutes. The 

integration of LLMs for RCA along with knowledge graph grounding and multi-agent architectures lead to 90 to 95 

percent accuracy and MTTR of 60 to 100 minutes.  

 

This trajectory demonstrates the additive effect of layering complementary techniques. There is no single winner; 

rather, the orchestration of anomaly detection (which attains high sensitivity), RCA methods (which achieve high 

specificity), and LLM interpretation (which results in actionability) as a whole creates comprehensive systems (Xu et 

al., 2024).  

 

11.2 Scalability and Generalization 
AIOps systems demonstrate strong scalability within organizations they are trained on, but generalization across 

organizations remains limited. Models trained on one organization's incidents often underperform when transferred to 

different environments due to: 

 Infrastructure Heterogeneity: Service topologies, monitoring strategies, and failure modes vary dramatically 

across organizations 

 Vocabulary Variation: Different organizations use different terminology for similar phenomena 

 Data Distribution Shift: Incident patterns evolve as systems age, configurations change, and new failure modes 

emerge 

 

Transfer learning and few-shot adaptation approaches show promise for addressing generalization, but practical 

applicability remains constrained. This limitation motivates federated learning approaches and industry consortium 

efforts to develop shared incident datasets and vocabularies (Wei, Ouyang et al., 2022). 

 

11.3 Operational and Cultural Factors 
Technology implementations succeed or fail based on organizational factors as much as technical factors. Successful 

AIOps deployments require: 

 Clear Incident Ownership: Defined teams responsible for incident response, enabling focused training and tool 

optimization 

 Blameless Culture: Organizations must foster psychological safety enabling incident report honesty rather than 

blame avoidance 

 Tool Integration: AIOps platforms must integrate seamlessly with existing ITSM tools and workflows rather than 

replacing them 

 Continuous Training: Operators require training on tool capabilities, limitations, and proper escalation procedures 

 

Organizations that view AIOps as technical tool replacement for human expertise struggle to achieve adoption and 

realize value. Organizations that view AIOps as augmentation enabling humans to focus on complex analysis and 

strategic reliability improvements achieve strong outcomes (Wei, Ouyang et al., 2022). 

 

11.4 Cost-Benefit Analysis and ROI 
AIOps implementations represent substantial investment—platform licensing, infrastructure expansion, and 

implementation labor. Conservative cost-benefit analysis indicates: 

 

Implementation Costs: 

 Platform licensing: USD 500K to 5M annually (organization-dependent) 

 Infrastructure expansion: USD 1M to 10M (additional storage, processing capacity) 

 Implementation services: USD 500K to 2M 

 Training and change management: USD 100K to 500K 

 Total Year 1: USD 2.1M to 17.5M 

 

Benefits (Annual): 

 MTTR reduction (60-75 percent): 1,000 incidents annually × 2 hour average reduction × USD 8K hourly cost = 

USD 16M 

 Alert reduction (60-80 percent): Enables 2-3 analyst reallocation × USD 150K salary + benefits = USD 300K-

450K 

 Prevented outages: Difficult to quantify but substantial 

 Regulatory compliance improvement: USD 500K-2M value 

 Total Annual: USD 16.8M-18.95M 

 

Conservative analysis indicates 12-18 month ROI even under pessimistic assumptions, with multi-year ROI exceeding 

200 percent (Yu et al., 2023). 
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Figure 6: LLM Model Progression (GPT-3.5 to o1-preview: 63% → 84%) 

 

CONCLUSION 

 

The integration of large language models and advanced machine learning techniques with IT operations fundamentally 

changes the way incident management works. AIOps-LLM systems are able to complete the entire cycle from detection 

to remediation in a matter of minutes, which used to take human-dominated processes reactive to the incident for 4-8 

hours. As a result of implementing these systems, organizations save more than 300,000 hours every year in total and 

have a cost-saving effect of more than USD 13.6 million per organization.  

 

The present-day systems exhibit mature technical capabilities: anomaly detection accuracies ranging from 94.7 to 99.9 

percent; root cause analysis performance varying between 78 and 82 percent; and MTTR improvements being within 

60-75 percent. These are the results of empirical research that have been verified and are taken from the different 

enterprise implementation projects in the sectors of financial services, technology, telecommunications, and 

manufacturing (Yu et al., 2023).  

 

The worldwide AIOps market, which is expected to grow from USD 5.3 billion in 2024 to USD 40.75 billion by 2034 

at a CAGR of 22.4 percent, is a clear indication of how much the value of automation is recognized by the 

organizations. The next evolution will bring about a completely autonomous cloud operation, multimodal incident 

analysis, and cross-organizational learning, which will be, capabilities, even more, dramatic. A slow AIOps adoption 

strategy is a risk of losing the competitive edge as AIOps is going to become a standard industry practice. The 

integration of AIOps, large language models, and knowledge graph technologies is a big step towards more reliable, 

efficient, and resilient IT operations worldwide (Zhang et al., 2023).  
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